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Applications of Gel Permeation Chromatography. 
111. Formulation 

MORTON SCHRAGER, Xerox Corporation, Rochester, New York 14644 

synopsis 
This paper describes a general theory for the optimization of multicomponent blending 

to achieve a desired chromatographic distribution. A procedure for compound blending 
is also discussed, where optimum replication of both the chromatographic spectra and a 
second independent parameter can be achieved. Lastly, this theory is applied in a 
hypothetical example. 

INTRODUCTION 

In the two previous publications in this series, methods were described 
for the separation of a gel permeation chromatogram into its component 
peaks' and graphically determining molecular weight averages.2 The 
corollary procedure to separating and analyzing a chromatogram into its 
components involves formulating a mixture of a number of materials to 
obtain the desired chromatographic spectrum. Smitha has previously 
presented a method of formulation which has been shown to be effective 
in the formulation of a broad molecular weight distribution blend. As 
discussed by Smith, the method is somewhat more general than Tung's' 
and more sensitive than the method of Hess and K r a t ~ . ~  However, this 
method is only a particular solution of a more general theory of formulation 
as described below. 

BACKGROUND 

It is well known that the weight concentration of a solute in a dilute 
solution is in many cases found to be6 

(1) 
n, - nl c, = - n - n1 

where C, is the weight concentration in g/cm3 of solution; n,, nl, and n are 
the refractive indices of the solution, the solvent, and the solute, respec- 
tively. 

Inherent in eq. (1) is the assumption that the densities of the solution, 
solute, and solvent are similar and that the Gladstone-Dale equation 
holds for the system? 
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The difference between the index of refraction of the solution and the 
solvent (n8 - nl) is proportional to the height of the chromatogram, 
R(V). This assumes a linear relationship between the input signal and 
the output of the recorder. 

From this, the area under a chromatogram peak may be expressed as 

If a number of components are present in the eluent, the weight fraction 
of the kth component, C k ,  associated with the peak elution volume V n  can 
be expressed as 

where nk is the refractive index of the kth component and Ak is the area 
associated with the kth peak. The weight fraction of the kth component, 
c k )  is then a function only of the area under the elution peaks and the 
refractive index differences (nc - nl). It is independent of both the peak 
shape and the peak elution volume v k .  

For the case where all components exhibit the same refractive index, (as 
is approximately the case for polymer molecules that are homologues of the 
same monomer), eq. (3) reduces to 

THEORY OF CHROMATOGRAPHIC FORMULATION 
Generally, in a formulation procedure, it is desirable to replicate a mate- 

rial whose chromatogram contains n peaks (i.e., n resolvable components). 
To best replicate this material, a number of materials are available which 
contain some or all of the n peaks) however, in concentrations which differ 
considerably from the desired distribution. Assuming there are m mate- 
rials suitable for use in the replication procedure, let x j k  be the weight 
fraction of the kth component in material j. Then the given spectra can 
be replicated when 

m 

where the coefficients a, represent the weighted amount of each material 
necessary to reproduce the desired spectrum, i.e., the weight fraction of 
each material, wj, is 

aj wj = - c a,' 

If each of the m materials contains only one component of the desired 
Smitha has formulation, eqs. (4), (5), and (6) serve to define the problem. 
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presented a solution for the w,'s for the case where each of the m materials 
gives rise to one Gaussian chromatographic peak. However, in general, 
any of the m materials may contain a considerable number of peaks. 
Furthermore, there does exist some possibility that one of the components 
used in the mixture may contain a spurious peak not present in the desired 
distribution. It is, however, desirable to use this component because of 
other features in its chromatogram. Thus, the total weight fraction of 
the resultant chromatogram is 

n 7l' m 

C c, = C c wjxj, = 1 
k - 1  j = l  k - 1  

(7) 

where n' may, in some cases, be greater than n, since .y must include all of 
the various peaks present in all m materials. 

The closest approximation to the desired distribution can most readily 
be found by the method of least squares? Let R2 represent the square of 
the difference between the desired and obtainable chromatogram. Then, 

R2 = 5 (c, 
k = l  j - 1  

where n' includes all the individual peaks included in n and n'. In most 
cases, one would choose materials such that n' = n. For this case, then, 
n = n' = n'. However, more generally, cases may arise where n' # n, 
and account must be taken of this factor. 

Minimizing the sum of the squares of the deviations results in a set of m 
simultaneous equations of the form 

m 

k - 1  j - 1  
(9) 

where i = 1,2, . . . , m. Equation (9) represents the solution to the prob- 
lem, since the a,'s can now be found. However, the equation is in a very 
cumbersome form. It can be simplified significantly by rewriting it as 

where d, = C C,X,. 
k 

Let 

B i j k  = C xfkxjk 
k 

then 

dt = C Btjkaj 
i 

or, using matrix notation, 

d = Ba 
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where d is the column matrix [d,, d, .... dm] and, from eq. (lo), is 

and B is the matrix IIBilkll and, as shown in eqs. (11) and (12), is 

[ F Ckx,, C Ckxzk, . . . .  C c x m k ] ;  a is the column matrix [al.  . .a,]; 
It It 

Assuming that the set of simultaneous equations expressed by d = Ba 
consists of m linearly independent equations of m unknowns, then the rank 
of B is m. Therefore, the determinant of the matrix defined in eq. (14), 
lBl, does not vanish, i.e., B is nonsingular, and the inverse matrix B-' 
exists.8 The solution of eq. (13) is then 

a = B-ld. (15) 

From this, the a i s  can be found using Cramer's rule and is 

C X Z l k . .  . . .  .d ,  
k 

where [ I  indicates the determinant and IBI is the determinant of the matrix 
defined in eq. (14). 

When the number of equations in (13) is large, Cramer's rule is in- 
efficient since it requires the evaluation of high-order determinants. More 
practical methods of solving eq. (13) such as the Gaussian reduction 
method or the Gauss-Jordan method can be u ~ e d . ~ ~ ~  Both of these methods 
involve iterative procedures and are more readily adaptable to machine cal- 
culation. 

COMPOUND BLENDING 

The methods outlined above permit the judicious selection of the proper 
amounts of material to best replicate a given chromatogram. However, 
when using gel permeation chromatography as a tool in formulation, a 
more general situation may arise where it is desirable to replicate both the 
chromatogram and a second independent parameter, such as gel point, 
viscosity, etc. If this second independent parameter is a function of 
molecular weight, this can best be accomplished analytically by introducing 
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a set of normalized weighing factors, g k ,  such that the chromatogram peaks 
are weighted in a nonlinear manner. Using this notation, eq. (9) can be 
written as 

Subsequent solutions of eq. (17) are exactly analogous to those dis- 
cussed above, with, however, the inclusion of the numerical values of the 
g:s. 

As an example of this procedure, in the Appendix an analytical set of g k  

are derived for replication of the viscosity as well as the chromatogram. 
Note that if, by chance, this second parameter is independent of molecular 
weight, or is linearly proportional to the elution volume, g l  = g2 = g k ,  and 
eq. (17) reduces to eq. (9). 

EXPERIMENTAL RESULTS 

As an example to illustrate the above procedure, a simple hypothetical 
case has been selected. A material of unknown composition is examined 
and found to have the chromatogram shown in Figure 1. It is most 
desirous about to formulate this material. However, the materials presently 
available for formulation have the chromatograms shown in Figures 2 and 
3. The problem, then, is what is the blending composition that will most 
closely approximate the material resolved in Figure 1. To determine the 
fractional area beneath each peak, each of the chromatograms can be 
analyzed using either the methods outlined in an earlier publication' or, as 

v l  "2 v3 v4 v5 
Fig. 1. Chromatogram of an unknown material. 
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Fig. 2. Chromatogram of material A. 

Fig. 3. Chromatogram of material B. 
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TABLE I 
Fractional Areas in the Various Peaks 

VI Vt Va v4 vs 
Figure 1 -21 .08 .18 . lo  .43 
Figure 2 .05 .06 .14 .16 .59 
Figure 3 .75 .09 .10 .06 0 

TABLE11 , 

Comparison of Calculated and Actual Peak Ratios 
~ ~~ ~ ~ ~~~ 

Vl vz Va VC VS 
Actual (Fig. 1) .21 .os -18 .10 . .43 
Calculated .22 .07 .13 .14 .44 

was done here, using a planimeter. The results for the five components 
found are tabulated in Table I. 

For this system, eq. (16) results in 

where 
D = (CXl&X2&)2 - c(xmk)2c(x2kP (20) 

and the summations are over the five components present. 
The weight fraction of each material is given by eq. (6) and, for this 

case, is tabulated in Table 11. As can be seen, the method does reproduce 
the optimum spectra under the conditions imposed on it. 

SUMMARY 
This paper is the last in a series of publications designed to enhance the 

practical utility of gel permeation chromatography. In the two previous 
publications, methods have been detailed for the resolution of a chro- 
matogram into its component peaks,’ for the prediction of GPC calibration 
 curve^,^ and for a graphic method of obtaining molecular weight averages2 
This paper presents a general method of formulation, when the spectra of 
the desired material (the model) and the spectra of the materials available 
are known. This theory should prove to be valuable for many blending 
operations. Furthermore, as formulated, this theory is not specific to 
GPC and, in fact, is applicable to analytical data obtained from any of a 
number of sources. 

Appendix 
In a blending operation, it is sometimes desirable to reproduce the viscosity as well as 

If by suitable blending, an exact reproduction of the chromatogram of model material. 
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the desired chromatogram could be achieved, then a priori the desired viscosity will also 
be obtained. However, this is an ideal rarely achievable. Inevitably, in formulation 
work, some compromise must be reached betweer the desire to reproduce the chromato- 
gram and the desire to reproduce a given viscosity. This section outlines a rational 
method for obtaining this objective, for the problem where the model material consists 
of polymer molecules that are homologues of the same monomer. For this case, 

In = M = A - BV (A-1 ) 

and 

l n r ) = l n C + D l n M  (A-2) 

where A ,  B, C, and D are constank, M is the molecular weight, and r )  is the viscosity. 
Both these equations are, of course, only approximately valid over wide molecular 
weight ranges. However, for the purpose of this discussion, it will be assumed that 
these equations are valid in the molecular weight range of interest. It is of considerable 
importance to evaluate the parameter D in the same solvent and at the same temperature 
as used in the GPC calibration curve, eq. (A-1). 

The fluidity, (p, of a component of elution volume V can then be found by combining 
eqs. (A-1) and (A-2) and is 

( A 4  

Assuming that the fluidities are additive, the 

(p = q-1 = cleCiv 

where C; = BD and C; = e-DA/C. 
fluidity of a mixture containing k components is found to be 

(p = xXk(pk = cl CXtectvk 
k k 

where x k  is the weight fraction of component k. 
From eq. (A-4) the weighing factors gk can be found for eq. (15) and are 

k 

Qualitatively, these results imply that in a blending experiment, if one desires to 
optimize the replication of both the chromatogram and the viscosity of a model material, 
it is most important to obtain as close a match as is possible with the higher elution 
volume (lower molecular weight) components. These components must therefore, be 
more heavily weighed in eq. (17), and this is accomplished by the use of eq. (A-5). 

It is interesting to note that the set g k  is dependent only on the product of B .  D. If 
materials are present whose constant Be D differ, they must each be evaluated separately. 
This would be the case, in general, for a mixture of polymers that, are not derivat.ives of 
the same monomer. For this w e ,  C2 in the above equations should be replaced by 
CZk, for the kth component. However, both B and D vary over a narrow range and 
often the assumption that B.D = constant is quite reasonable. 

The author would like to acknowledge the support of J. E. Carey who originally 
brought this problem to his attention. 
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